Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(26): e2207263, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36949495

RESUMO

Experimental results on the charge-state-dependent sputtering of metallic gold nanoislands are presented. Irradiations with slow highly charged ions of metallic targets were previously considered to show no charge state dependent effects on ion-induced material modification, since these materials possess enough free electrons to dissipate the deposited potential energy before electron-phonon coupling can set in. By reducing the size of the target material down to the nanometer regime and thus enabling a geometric energy confinement, a possibility is demonstrated to erode metallic surfaces by charge state related effects in contrast to regular kinetic sputtering.

2.
Nanotechnology ; 32(35)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34015773

RESUMO

We present a direct way to generate hillock-like nanostructures on CaF2(111) ionic crystals by kinetic energy deposition upon Au-cluster irradiation. In the past, the formation of similar nanostructures has been observed for both slow highly charged ions and swift heavy ions. However, in these cases, potential energy deposition of highly charged ions or the electronic energy loss of fast heavy ions, respectively, first leads to strong electronic excitation of the target material before the excitation energy is transferred to the lattice by efficient electron-phonon coupling. We now show that the kinetic energy deposited by slow single Au-clusters directly in the lattice of CaF2(111) leads to the production of nano-hillocks very similar to those found with slow highly charged and swift heavy ions, with heights between 1 and 2 nm. Our results are in good agreement with previous cluster irradiation studies regarding energy deposition and hence nano-structuring of surfaces, and we present Au-cluster irradiation as novel tool to fine-tune nanostructure formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...